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We consider the dynamics of convection in a strong vertical magnetic field, and in the
presence of rapid rotation. In both these cases, in circumstances which can be realized
in the laboratory, the onset of convection is in the form of tall thin cells. Because of
this, the dynamics near onset is characterized by an interaction between the cellular
modes and the horizontally averaged temperature profile. The effects on the dynamics
are slight in the case of a Boussinesq fluid. However in both cases, when the layer
is stratified (non-Boussinesq), the convection can lose stability to oscillations close to
onset. Properties of the oscillations and their stability to long-wavelength modulation
are extensively investigated.

1. Introduction
There has been considerable interest in recent years in the development of reduced

models of convection in fluid layers in the presence of rapid rotation about a vertical
axis or strong vertical magnetic fields. It has been well known for many years (see
e.g. Chandrashekhar 1961) that the onset of convection in these cases occurs on very
small horizontal scales, and this permits a two-scale analysis of the problem. Proctor
(1986) considered magnetoconvection in a Boussinesq fluid, and was able to write
down a nonlinear evolution equation for the convection close to onset, in which the
cellular motion interacted nonlinearly with the mean temperature profile. At leading
order this system gave a strong selection of the wavenumber at onset, but little
information as to the preferred planform, which had to be calculated at higher order.
More recently Matthews (1999) and Julien, Knobloch & Tobias (1999, 2000) have
extended the results in various ways, by looking at larger amplitudes and different
scalings, and have produced many interesting results, particularly in determining the
changes to the velocity profiles in the nonlinear regime, and non-trivial results for
planform selection when the initial bifurcation is oscillatory. The rotating problem
has recently been considered in the same spirit by Julien & Knobloch (1997, 1999)
(see also Dawes 2001). Julien and his collaborators have considered aspects of the
non-Boussinesq case. While they found the form of e.g. the vertical velocity far from
onset, they did not investigate any effects of the asymmetry when the motion is on a
hexagonal lattice.

The present paper therefore consists of an examination of the dynamics near
the steady-state bifurcation on a hexagonal lattice in the non-Boussinesq case for
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both problems. It is known that for aspect ratios of order unity the dynamics is
characterized by a standard normal form which guarantees steady solutions near
onset, and shows that, for weakly non-Boussinesq conditions at least, there is stable
steady convection with hexagonal planform near onset, provided that the parameters
are such that there is no primary Hopf bifurcation. The new feature here, due to the
small aspect ratio of the convection, is the presence of another dynamically active
quantity, namely the horizontally averaged temperature perturbation. Remarkably,
this new mode interacts with the terms in the normal form induced by the hexagonal
symmetry so as to destabilize the steady hexagons close to onset, and to affect their
stability to modes with less symmetry in a non-trivial way. It must be emphasized
that the only special circumstance here is that the imposed magnetic field (or imposed
rotation) is sufficiently large. The oscillations can occur for a large range of the
diffusivity ratios, including (for the magnetic problem) the laboratory case where
the magnetic diffusivity is very large compared with other diffusion rates. They
have nothing to do with the oscillatory primary bifurcation that can occur only
when the magnetic diffusivity is sufficiently small. Similarly, the oscillations in the
rotating problem can occur for arbitrary sufficiently large Prandtl numbers. While
the oscillations can be understood in the main by assuming them to be coherent in the
horizontal directions, there is the possibility that they may lose coherence over long
distances via mechanisms analogous to those driving the Turing and Benjamin–Feir
instabilities.

The plan of the paper is as follows. In the next section we set up a simple
model problem (magnetoconvection with variable magnetic diffusivity), and derive
the governing equations for large Chandrasekhar number Q by expanding in powers
of Q−1/6. The resulting system consists of a p.d.e. in the horizontal (x, y) directions
describing the cellular motion, and a p.d.e. in the vertical (z) direction describing the
evolution of the mean temperature profile. This is then reduced to a set of o.d.e.s
under further assumptions on the parameters. In § 3 we carry out the same task for
a rapidly rotating layer with variable viscosity. This exhibits different scalings from
the magnetic problem, but can be reduced to essentially the same model. In § 4 we
investigate the dynamics of these o.d.e.s and also consider the effect of small terms
representing degeneracy-breaking effects at higher order. Finally we model possible
long-wavelength instabilities by introducing diffusion in the horizontal directions. In
a conclusion we point the way to future work.

2. Magnetoconvection with non-uniform diffusivity ratio ζ
2.1. Governing equations

We consider thermal convection in a horizontal layer of depth d due to a temperature
difference ∆T across the layer. In the basic motionless state a uniform vertical mag-
netic field B0ẑ permeates the layer. The gravity vector is −gẑ. The fluid has constant
thermal diffusivity κ and kinematic viscosity ν, while the magnetic diffusivity η = η(z)
is not constant. In all other respects the system obeys the Boussinesq approximation,
in which densities etc. are taken to be constant except in the driving buoyancy term.
It should be emphasized that the device of allowing η to depend on z is simply a
convenient way of breaking the up–down symmetry that characterizes the Boussinesq
approximation. More realistic representations of the effects of stratification may be
expected to give qualitatively similar results. We non-dimensionalize distances with d
(so that the layer lies between z = 0 and z = 1), the velocity u with κ/d, magnetic field
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perturbation b with B0, and write the temperature T = T0 + ∆T (1− z + θ), where T0

gives the temperature at z = 1. Time t is scaled with d2/κ, and fluid pressure p with
κν/d2. We then obtain the following system (Proctor & Weiss 1982; Proctor 1986):

1

σ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ Rθẑ + Qζ0

(
∂b

∂z
+ b · ∇b

)
+ ∇2u, (2.1)

∂θ

∂t
+ u · ∇θ = u · ẑ + ∇2θ, (2.2)

∂b

∂t
+ u · ∇b =

∂u

∂z
+ b · ∇u− ζ0∇× (h(z)∇× b), (2.3)

∇ · u = ∇ · b = 0, (2.4)

where σ = ν/κ is the Prandtl number, ζ0 = η0/κ (where η0 = η(0) is the diffusivity
ratio at z = 0), R = gα∆Td3/κν is the Rayleigh number (α is the coefficient of thermal
expansion) and Q = B2

0d
2/(µ0ρ0νη0) is the Chandrasekhar number (µ0 is the magnetic

permeability and ρ0 the base density). The important function h(z) = η/η0 measures
the variation of η with height. In Proctor (1986) h(z) was set to unity. The boundary
conditions at z = 0, 1 are the standard ones, namely θ = uz = 0, ẑ× Du = ẑ× b = 0,
where D denotes a derivative with respect to z.

2.2. Large-Q expansion

Guided by earlier work, we now suppose that Q � 1; defining the small parameter
ε ≡ Q−1/6, we make the following scalings:(

∂

∂x
,
∂

∂y

)
= ε−1

(
∂

∂x̃
,
∂

∂ỹ

)
; u = (εũx, εũy, ũz) ≡ (εũH, ũz); p = ε−2p̃;

θ = ε2(θ̃(x̃, ỹ, z) +Θ(z)); b = (ε3b̃x, ε
3b̃y, ε

2b̃z) ≡ (ε3b̃H, ε
2b̃z);

and write R = ε−6r. Θ represents the horizontally averaged part of the perturbation
temperature, while θ̃ now represents the fluctuating part and has zero mean by
definition. These scalings follow those in Proctor (1986) but differ from those in other
papers such as Matthews (1999), which deal with steady states much further from
onset. (Note that in Proctor (1986) σ was also scaled to be of order ε2. We could make
this assumption here as well, but it adds little to the model.) We now drop the tildes
in these expressions and expand all quantities in powers of ε2, so that θ = θ0 + ε2θ2,
etc. Then at leading order we obtain

L
 u0z

θ0

b0z

 ≡
 r0θ0 + ζ0Db0z

u0z + ∇2
Hθ0

Du0z + ζ0h(z)∇2
Hb0z

 = 0, (2.5)

where ∇H gives the horizontal component of the gradient. By eliminating all variables
except θ0, and restricting to solutions bounded in the horizontal, we make the ansatz
θ0 = −∇2

HF(x, y, t)f(z) where

D(h(z)−1Df(z)) + r0f(z) = 0, (2.6)

with the boundary conditions f = 0, z = 0, 1; this two-point boundary value problem
determines r0 as an eigenvalue. We fix F by imposing a normalization on f so that

〈f2〉 ≡
∫ 1

0

f2 dz = 1. (2.7)
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The eigenfunction of L can then be written in the form u0z

θ0

b0z

 =

 f∇4
HF−f∇2
HF−(ζ0h)
−1Df∇2

HF

. (2.8)

We next determine the horizontal components u0H , b0H . These may be found from
the horizontal components of (2.1), (2.3) and from (2.4). We obtain

0 = −∇Hp0 + ζ0Db0H, (2.9)

0 = Du0H + ζ0h∇2
Hb0H − ζ0Dh∇Hb0z, (2.10)

0 = ∇H · u0H + Du0z = ∇H · b0H + Db0z. (2.11)

These can be shown to be solved for u0H = Ψ∇H (−∇2
HF), b0H = Φ∇HF , where

Ψ = Df, Φ =
1

ζ0

D

(
1

h
Df

)
= − r0

ζ0

f; p0 = ζ0DΦF. (2.12)

At the next order we obtain the evolution equation for F . This arises as a solvability
condition for the inhomogeneous system

L
 u2z

θ2

b2z

 =

 N(1)

N(2)

N(3)

, (2.13)

where

N(1) = Dp0 − r2θ0 − ζ0(b0H · ∇Hb0z + b0zDb0z)− ∇2
Hu0z,

N(2) =
∂θ0

∂t
+ u0H · ∇Hθ0 + u0zDθ0 − D2θ0,

N(3) =
∂b0z

∂t
+ u0H · ∇Hb0z + u0zDb0z − b0H · ∇Hu0z − b0zDu0z − ζ0h(z)D

2b0z.


(2.14)

By elimination among these equations we find that

r0u2z + D

(
1

h
Du2z

)
= r0N

(2) + D

(
1

h
N(3)

)
− ∇2

HN
(1), (2.15)

and so using (2.6) we have〈
f

(
r0N

(2) + D

(
1

h
N(3)

)
− ∇2

HN
(1)

)〉
= 0. (2.16)

Application of this condition at every value of (x, y) gives the following equation
for F:

(r0 − ζ−1
0 C2

B)∇2
H

(
∂F

∂t

)
= r0H(t)∇4

HF − r0C2
θ∇2

HF + ∇8
HF − r2∇4

HF − CNr0ζ−1
0

×[∇4
HF∇2

HF + ∇HF · ∇H (∇4
HF)

+2∇2
H (∇2

HF)2 − ∇2
H (∇HF · ∇H (∇2

HF))], (2.17)

where f has been normalized according to (2.7), and

C2
B =

〈
1

h2
(Df)2

〉
, C2

θ = 〈(Df)2〉, CN =

〈
1

h
f2Df

〉
. (2.18)
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It is supposed that r0 > ζ−1
0 C2

B , this being a sufficient condition for steady-state
bifurcation from the zero velocity state. The function H(t) = 〈f2DΘ〉, and the system
is closed by the equation for Θ, obtained from the horizontal average of (2.2):

∂Θ

∂t
= 2( fDf) ∇4

HF∇2
HF + D2Θ. (2.19)

When h = 1, we have C2
B = C2

θ = r0 = π2, CN = 0, and the results agree with
equation (3.4) of Proctor (1986) (where ∇2

HF is written −g). However the character of
the system is completely altered when h is not symmetric about the mid-plane, since
then generically CN 6= 0. For other non-symmetric problems such as convection in a
polytropic atmosphere other quadratic terms may appear; for example in the present
case there is no contribution from the nonlinear terms in N(2), but this cannot be
expected to be true in general. The analysis of subsequent sections does not depend
on the precise nature of the quadratic terms.

The equation for F given above resembles the ‘long wavelength’ equations for
problems such as convection between poorly conducting boundaries or Marangoni
convection, in which the horizontal scale is much greater than the vertical one (for
references and examples see Knobloch 1990). Here the opposite is true; the key to the
reduction in the present case is that the limiting critical Rayleigh number becomes
independent of the horizontal scale as Q→∞.

2.3. Reduction for small stratification

Equations (2.17), (2.19) together present the curious aspect of a p.d.e. in (x, y, t) being
coupled to one in (z, t), and their analysis, which has to be carried out numerically, is
beyond the scope of the present paper. However we may reduce the system to four
coupled o.d.e.s when CN � 1 and the coefficient on the left-hand side of (2.17) is very
small. To achieve this we suppose that h is almost equal to unity and ζ0 ≈ 1, so that
CN = δC̃ and r0− ζ−1

0 C2
B = δ2γ2, say where δ � 1. (There are of course more general

circumstances in which the reduction can be made.) If we make the scalings F = δF̃ ,
Θ = δ2Θ̃, r2 = r(0) + δ2r(2), drop the tildes and expand quantities in powers of δ2, so
that F̃ = F (0) + δ2F (2) + . . . , etc., then at leading order we obtain

0 = (−π4∇2
H + ∇8

H − r(0)∇4
H )F (0). (2.20)

We seek solutions periodic on a hexagonal lattice, so that

F (0) = A(t)eik1·x + B(t)eik2·x + C(t)eik3·x + c.c., (2.21)

where |kj | = k, j = 1, 2, 3, and k1 + k2 + k3 = 0. Then ∇2
HF

(0) = −k2F (0), and so r(0) =

π4k−2 + k4. Because h is approximately unity, f ≈ √2 sin πz and Θ̃ ≈ −G(t) sin 2πz.
Then (2.19) takes the form

∂G

∂t
= 2πk6(|A|2 + |B|2 + |C|2)− 4π2G, (2.22)

while at O(δ2) the solvability condition for the F (2) equation yields, when projected
onto the three components of F (0),

−γ2k2 ∂A

∂t
= k4π3GA− r̃k4A− αB∗C∗,

−γ2k2 ∂B

∂t
= k4π3GB − r̃k4B − αC∗A∗,

−γ2k2 ∂C

∂t
= k4π3GC − r̃k4C − αA∗B∗,


(2.23)
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where r̃ = r(2)−k−2δ−2(r0C
2
θ−π4), and α ∝ C̃ . The asterisks denote complex conjugate.

Finally we choose k = kc = (π4/2)1/6 (to minimize r(0)), and we rescale time, A,B, C
and G to give the canonical system

Ȧ = −GA+ µA+ B∗C∗,
Ḃ = −GB + µB + C∗A∗,
Ċ = −GC + µC + A∗B∗,
Ġ = s

(
1
3
(|A|2 + |B|2 + |C|2)− G) ,

 (2.24)

where µ ∝ r̃ and s ∝ γ2/α2. There is no rational reduction of the equations available
when δ is not small. Nonetheless the strong selection of the wavenumber kc at onset
is likely to yield nonlinear solutions, periodic on a hexagonal lattice, for which the
above equations give a good qualitative approximation. A full numerical investigation
of (2.17), (2.19) is in progress.

3. Convection in a rapidly rotating layer with non-uniform viscosity
3.1. Governing equations

The dynamics of rapidly rotating convection has received as much attention as
the magnetic problem; see Chandrasekhar (1961) for details and earlier references.
The Boussinesq case at high amplitude has been treated by Julien & Knobloch
(1997, 1999); see also Dawes (2001). Here, as in the magnetic problem, we focus on
conditions near onset. We can perform a very similar analysis, leading to essentially
the same canonical equations. We further suppose, again as a model of the effects of
stratification, that the viscosity ν = ν(z) and now define h(z) = ν(z)/ν(0), ν(0) ≡ ν0 by
analogy with the h defined in the previous section. The vertical angular velocity of the
layer is Ωẑ, and the Taylor number T ≡ 4Ω2d4/ν2

0 is taken to be large. The centrifugal
force term is (as is conventional) supposed balanced by a horizontal pressure gradient.
Making the same non-dimensionalization as before, we arrive at the system

1

σ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ Rθẑ − T 1/2ẑ × u+ ∇ · (h∇u), (3.1)

∂θ

∂t
+ u · ∇θ = u · ẑ + ∇2θ, (3.2)

∇ · u = 0. (3.3)

The boundary conditions on u and θ are the same as previously. The dimensionless
numbers apart from T are the same as before, except that ν is replaced by ν0.

3.2. Large-T expansion

For the Boussinesq problem (see e.g. Chandrasekhar 1961) it is found that in the
limit of large T the critical Rayleigh number scales like T 2/3, while the critical
wavenumber scales like T 1/6. We therefore define ε = T−1/6, and make the following
scalings analogous to those in the previous section:(

∂

∂x
,
∂

∂y

)
= ε−1

(
∂

∂x̃
,
∂

∂ỹ

)
= ε−1∇̃H ; p = ε−2p̃; θ = ε2(θ̃(x̃, ỹ, z) +Θ(z));

u = ũ+ ṽ, ũ = (εũx, εũy, ũz) ≡ (εũH, ũz), ṽ = (ṽx, ṽy, 0);

ũ and ṽ may be identified with the poloidal and toroidal parts of the velocity field, and
we define the respective potentials ε2ψ̃, εφ̃ by ũ = (ε∇̃H (Dψ̃), −∇̃2

Hψ̃), ṽ = ẑ × ∇̃Hφ̃.
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Here the tilde indicates derivatives relative to the scaled coordinates as before. We
also write R = ε−4r. We once again drop the tildes and expand all quantities in powers
of ε2. At leading order we obtain

L
 p0

ψ0

φ0

θ0

 ≡
 −Dp0 + r0θ0 − h∇4

Hψ0

∇H (−p0 + φ0)
ẑ × ∇H (−Dψ0 + h∇2

Hφ0)
−∇2

Hψ0 + ∇2
Hθ0

 = 0. (3.4)

The first three equations represent respectively the vertical poloidal, horizontal
poloidal and toroidal parts of the momentum equation (3.1). If we write ψ0 =
F(x, y, t)f(z) (note the change in the definition of F from the previous section), then
in contrast to the magnetic problem F is not arbitrary but must satisfy the planform
equation ∇2

HF = −k2F . Using this, we can eliminate all variables in favour of f, which
must satisfy the boundary value problem

D

(
1

h
Df

)
+ k2(r0 − k4h)f = 0; f(0) = f(1) = 0. (3.5)

The eigenvalue r0 will depend on k, and we suppose that k has the value that
minimizes r0 (when h = 1 we have k = (π2/2)1/6; r0 = 3k4). We normalize f according
to equation (2.7). The other variables can then be written in terms of F, f:

θ0 = Ff; φ0 = p0 = −F
(

1

k2h

)
Df ≡ Fg(z). (3.6)

At the next order we have an inhomogeneous system, namely

L
 p2

ψ2

φ2

θ2

 =

 M(1)

∇HM(2)

ẑ × ∇HM(3)

M(4)

, (3.7)

where

M(1) = σ−1(u̇0z + u0H · ∇Hu0z + u0zDu0z)− r2θ0 − D(hDu0z)

= σ−1(k2Ḟf + (k4F2 + k2|∇HF |2)fDf)− r2Ff − k2FD(hDf),

∇HM(2) = σ−1(v0 · ∇Hv0) + k2hu0H

= ∇H (σ−1( 1
2
g2(k2F2 + |∇HF |2)) + hk2FDf

)
,

ẑ × ∇HM(3) = σ−1(v̇0 + v0 · ∇Hu0H + u0H · ∇Hv0 + u0zDv0)− D(hDv0)

= ẑ × ∇H (σ−1
(
Fg + 1

2
k2F2(fDg − gDf)

)− FD(hDg)
)
,

M(4) = θ̇0 + u0H · ∇Hθ0 + u0zDθ0 − D2θ0 + u0zDΘ

= Ḟf + (k2F2 + |∇HF |2)fDf − FD2f + k2FfDΘ.


(3.8)

The solvability condition for this system is (cf. equation (2.16))〈
f

(
M(1) − DM(2) − 1

k2
D

(
1

h
M(3)

)
+ r0

1

k2
M(4)

)〉
= 0. (3.9)

To obtain the governing equations we must also project the nonlinear terms in F onto
the space spanned by F . If we adopt the ansatz (2.21) then after some reduction we
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obtain (
k2

σ
+
r0

k2
− 1

σ
〈g2〉

)
∂A

∂t
= A

(
r2 − 2k2〈h(Df)2〉 − r0

k2
〈(Df)2〉+ 〈h(Dg)2〉

)
−Ak2H(t)− k2

σ
B∗C∗〈g2Df〉, (3.10)

together with two similar equations for B and C , where again H(t) = 〈f2DΘ〉, and Θ
obeys the analogue of (2.19), namely

∂Θ

∂t
= 2(fDf) F∇2

HF + D2Θ. (3.11)

This system is already close to the canonical form (2.24) which was found for the
magnetic problem, in that the equations for A,B, C are o.d.e.s. The p.d.e. for Θ can be
formally reduced as in the previous section, by choosing h(z) to be close to unity, and
the coefficient of Ȧ in (3.10) to be small (this occurs for σ slightly greater than 1/3).
The reader may verify that in this case also the canonical form (2.24) emerges as the
correct set of governing equations. This reduction is unfortunately of limited interest
since for σ < σ0 ≈ 0.67 the first bifurcation as R is increased is to oscillatory motion
at a different wavenumber. Nonetheless, it is easily checked by simple numerical
calculation that even when σσ0 the system (3.10), (3.11) with A = B = C will have
similar behaviour to (2.24), including the crucial Hopf bifurcation described in the
next section. We therefore confine ourselves in what follows to the study of (2.24) and
its extensions.

4. Analysis of the canonical system
4.1. Solutions with hexagonal symmetry

The equations (2.24) in principle describe solutions that have arbitrary initial ampli-
tudes A,B, C . There are solutions in the form of rolls (e.g. B = C = 0) when µ > 0;
these evolve to the steady state 1

3
|A|2 = G = µ but it may be verified that this state

is unstable to small perturbations. When all of A,B, C are non-zero we can show by
writing A = R1e

iφ1 , etc. that there is evolution towards a steady state (φ1 +φ2 +φ3 = 0)
in which all the variables may be taken as real and positive. In addition, as we show
below, (see (4.11) and ff ) the subspace where A,B, C have the same amplitude is
linearly stable. We may therefore take each of these variables equal, real and positive.
The system then reduces to the simple second-order system

Ȧ = A(µ+ A− G), Ġ = s(A2 − G). (4.1)

The line A = 0 is invariant (and A, being an amplitude, is restricted to being non-
negative). The fixed point {O; (A,G) = (0, 0)} is stable for µ < 0. There is a steady-state
bifurcation at µ = 0, and the non-trivial branch of steady modes satisfies

µ+ A0 − A2
0 = 0, G0 = A2

0. (4.2)

For 0 > µ > − 1
4

we have two solutions C+,C−, with A0 >
1
2

for C+ (see figure 1).
The C− solution is always unstable. There is clearly a saddle-node (SN) bifurcation at
µ = −1/4, but there is also the possibility of a Hopf bifurcation. Writing A = A0+aeλt,
G = G0 + geλt and linearizing in a, g we obtain the following equation for λ:

λ2 + λ(s− A0) + s(2A2
0 − A0) = 0. (4.3)
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O (C–)
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Figure 1. Bifurcation diagram for the system (4.1). Possible solution types are: O , origin; C±,
steady convection; P , periodic oscillation. Unstable solutions are shown in brackets. The symbol U
indicates that some solutions can escape to infinity.

Thus the C+ state is stable only for A0 < s. If s > 1
2

there is a Hopf bifurcation at

A0 = s, µ = s(s − 1). If s < 1
2

the whole non-trivial steady branch is unstable. The

point (µ, s)=(− 1
4
, 1

2
) is a standard Takens–Bogdanov double-zero bifurcation point

(see e.g. Chapter 7 of Guckenheimer & Holmes 1986) and we can use the general
theory given there to show that in the neighbourhood of this point (for s > 1

2
) there

will be a supercritical Hopf bifurcation from C+ with the resulting periodic solution
becoming homoclinic to C−. Further away from the degeneracy we have investigated
the equation numerically. We find that the Hopf bifurcation is always supercritical. If
we decrease s at fixed µ we obtain two different behaviours according to whether µ
is positive or negative. For − 1

4
< µ < 0 the steady solution C+ loses stability on the

line labelled ‘Hopf’ in figure 1. The periodic orbit formed in the bifurcation grows
until it becomes homoclinic to the solution C− on the line ‘Hom’. Thereafter the
solution tends to O for generic initial conditions until s = 1

4
. To the left of this line

the solution can escape to infinity for sufficiently large initial conditions (denoted by
U in figure 1). We discuss the large-amplitude dynamics below. For µ > 0, on the
other hand, finite-amplitude homoclinic orbits are impossible since the only available
saddle point, namely O , lies in an invariant plane. In this case stable periodic orbits
exist all the way down to s = 1

4
. There is a finite attracting region as long as s > 1

4
, but

otherwise solutions can be unbounded whatever the value of µ. The various regions
in parameter space are shown in figure 1, while examples of periodic orbits are shown
in figure 2.

We can investigate the behaviour of the solution when µ > 0 when the solutions
are of large amplitude. This will occur for the periodic orbits when s is close to 1

4
or

when µ is large. The orbits are then characterized by a ‘fast phase’, in which A starts
small, makes a large excursion and returns to low amplitude, and a ‘slow phase’ in
which A is very small. A similar type of analysis was used for a different convection
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Figure 2. Two examples of limit cycle solutions of (4.1). In (a) and (c) s = 0.68 and µ = −0.15,
while in (b) and (d), s = 1.0 and µ = 1.0. The squares show the locations of the fixed points.

problem by Hughes & Proctor (1990a, b). In the slow phase we have approximately

Ȧ = (µ− G)A, Ġ = −sG, (4.4)

and so

1

A

dA

dG
=

1

s

(
1− µ

G

)
. (4.5)

Integrating this equation between (A,G) = (∆,G1) and (∆,G2), where the (small) value
∆ labels the value of A at the beginning and end of the slow phase, we find

G1 − µ logG1 = G2 − µ logG2. (4.6)

In the fast phase, on the other hand, we may use the approximation

Ȧ = A(µ+ A− G), Ġ = sA2, (4.7)
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Figure 3. Fixed points H+, H− of the maps (4.6), (4.9) (with µ set to unity), as functions of s
(the actual fixed points are found by multiplying by µ). There are no solutions for s < 1

4
.

and since A is never zero, we may define a stretched time variable τ by d/dt = A(d/dτ).
Then the equations are linear, and we have the solution, satisfying A ≈ 0 and G ≈ G2

at τ = 0,

A =
1

q
(µ− G2)e

pτ sin qτ,

G = µ+ (G2 − µ)epτ
(

cos qτ− 1

q
(1− p) sin qτ

)
,

 (4.8)

where p± iq are the roots of the characteristic equation λ2− λ+ s = 0, so that p = 1
2
,

q = 1
2

√
4s− 1. The fast phase comes to an end when A becomes small again, or when

τ = π/q. This occurs for G = G3, where

G3 − µ = (µ− G2)Γ , Γ = epπ/q. (4.9)

For consistency we must have G3 � 1, and so it is necessary that µ � 1 or else
Γ � 1 (q � 1). The pair of mappings (4.6), (4.9) can be shown to have stable fixed
points G1 = G3 = µH+(s), G2 = µH−(s) for all s > 1

4
; the functions H+, H− are shown

in figure 3.

When s < 1
4

the characteristic equation above has real positive roots, and it may
then be shown that solutions of sufficiently large amplitude will typically escape to
infinity.

4.2. Higher-order corrections in the magnetic case

The reduced system (4.1) does not contain any higher-order terms that discriminate
between rolls and hexagons; it is possible that in the full system the hexagons seen
near onset lose stability to rolls at larger amplitude, as they do when Q is not large. If
we are to understand the behaviour of the convection at larger amplitudes, we should
add in such degeneracy-breaking terms, which are neglected in the leading-order
analysis. Rather than carry out an involved calculation, we can represent the effect
of neglected terms of higher order by adding arbitrary small terms to the equations
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for A,B, C . We are thus led to consider the system

Ȧ = −GA+ µA+ B∗C∗ − A(η1|A|2 − η2(|B|2 + |C|2)),
Ḃ = −GB + µB + C∗A∗ − B(η1|B|2 − η2(|C|2 + |A|2)),
Ċ = −GC + µC + A∗B∗ − C(η1|C|2 − η2(|A|2 + |B|2)),
Ġ = s

(
1
3
(|A|2 + |B|2 + |C|2)− G) ,

 (4.10)

which retains the symmetries of the underlying convection problem. Strictly speaking
we should add terms to the G equation also, proportional to e.g. G2 or ABC+A∗B∗C∗.
It will be seen, however, that these have no effect on the symmetry-breaking criteria,
since in (4.11) and similar equations the dynamics of G decouples. We take A,B, C to
be real as before and first look at the hexagonal case A = B = C . Then the non-trivial
steady branch satisfies µ+A− (1+ η̃)A2 = 0, where η̃ = η1 +2η2. We shall suppose this
quantity to be positive, guaranteeing bounded solutions. It can then be easily shown
that there is no Hopf bifurcation for s > 1/8η̃ while for 1/(2(1 + η̃)2) < s < 1/8η̃
there are two bifurcation points, with just one for s < 1/(2(1 + η̃)2). In every case the
steady solution is stable for sufficiently large µ.

We now examine perturbations that lead to a breaking of the hexagonal symmetry.
Consider a state (possibly time-dependent) that is stable in the symmetric subspace,
for which A = B = C = D, G = H say. Then writing A = D(1 + a), . . . , G = H + g
and linearizing, we obtain

ȧ = −g − a(D + 2η1D
2) + (b+ c)(D − 2η2D

2),
...

ġ = s(−g + 2D2(a+ b+ c)),

 (4.11)

and so the equation for Λ = a − b decouples from that for g and takes the simple
form Λ̇ = Λ(−2D + 2(η2 − η1)D

2). There is thus a symmetry-breaking bifurcation (to
rectangles), when 〈D〉 = (η2 − η1)〈D2〉, where the brackets now indicate an average
over a period of D. Hexagons remain stable if η2 < η1. From the equations satisfied by
the symmetric state, and recalling that D > 0, we have 〈D2〉 = 〈H〉 = µ+ 〈D〉− η̃〈D2〉.
Rearranging, we obtain the criterion for marginal stability,

µ =
1 + 2η1 + η2

η2 − η1

〈D〉. (4.12)

This result indicates that µ has to be very large for the hexagons to be unstable.
But in fact for small η̃ the average of D can be much smaller than the corresponding
value at the fixed point. For example, if η̃ = 0.01, µ = 20, s = 0.325 the value of D
at the fixed point is 4.97, but the average of D is only 0.453. Thus the value of µ at
which the solution with hexagonal symmetry becomes unstable is reduced by more
than a factor of ten, and this ratio does not change very much with µ, and so it seems
that the stability boundary occurs at values of µ rather smaller than of order η̃−1 as
implied by (4.12).

For µ > 0 we also have steady solutions of ‘roll’ type, with e.g. A > 0, B = C = 0.
These satisfy µ = A2( 1

3
+ η1). The stability problem for perturbations to B and C is

decoupled from G, and so the results are as in the usual case (s → ∞), namely that
rolls are stable for η2 > η1, µ > (η2 − η1)

−2( 1
3

+ η1). This is about one third the value
for marginal stability for hexagons, derivable from (4.12) when D represents the fixed
point. However there is the possibility of a Hopf bifurcation within the roll subspace,
when η1 < 0, and in this case the rolls are unstable when µ > s(1+η1)/(−6η1). Except
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for very large values of s this occurs at much lower values of µ than the rectangular
instability, so that there is generally no region where rolls are stable if η1 < 0. The
bifurcation is in fact degenerate at leading order, and amplitudes tend to infinity
in the unstable region if yet-higher-order terms are neglected. Thus for the eventual
stability of rolls we should generally require η1 > 0.

Because of the reduction of the value of µ for rectangular instability due to the
oscillations we have the possibility that the (time-periodic) hexagons lose stability
while the steady rolls are still unstable. This would suggest that it might be possible
to obtain stable time-periodic ‘rectangles’, for which A = B 6= C . Such solutions can
be found with considerable difficulty, but always in the region for which the rolls
are unstable to the oscillatory instability described above. They are thus not of great
interest.

4.3. Higher-order corrections in the rotating case

The rotating case differs from the magnetic case only in that the former has broken
reflectional symmetry, while the latter does not. We will therefore obtain reduced
equations precisely analogous to (4.10), which differ from those equations only by
replacing terms like . . . η2(|B|2 + |C|2) by . . . (η2|B|2 + η3|C|2), mutatis mutandis cyclic-
ally in the other equations. The difference between η2 and η3 is due to the lack of
reflectional symmetry, which is not broken in the magnetic field problem.

The instabilities of the last subsection have their counterpart here, with 2η2 being
replaced by η2 + η3. The results on stability within the hexagonal subspace are
unchanged. For the rectangular instability, we define (compare the definition of Λ
above) Λ1 = (a− b), Λ2 = (b− c), and obtain the equations

Λ̇1 = Λ1(−2D + 2(η3 − η1)D
2) + 2(η3 − η2)D

2Λ2,

Λ̇2 = Λ2(−2D + 2(η2 − η1)D
2) + 2(η2 − η3)D

2Λ1.

}
(4.13)

Using the new variables Q1 =
√

3(Λ1 + Λ2), Q2 = Λ1 − Λ2 we find

Q̇1 = Q1(−2D + (η2 + η3 − 2η1)D
2) +
√

3(η3 − η2)D
2Q2,

Q̇2 = Q2(−2D + (η2 + η3 − 2η1)D
2)−√3(η3 − η2)D

2Q1,

}
(4.14)

and so it follows that we have instability of hexagons when (η2 +η3−2η1)〈D2〉 > 2〈D〉.
(Steady) rolls are stable if µ(η1 − η2)(η1 − η3) > ( 1

3
+ η1). When one of the factors on

the left-hand side is negative, then rolls are always unstable and we have the analogue
of the Kuppers–Lortz instability (Busse & Heikes 1980). This leads to a periodic
modulation of the roll amplitudes; the structurally stable cycle that arises in the
Boussinesq case does not appear here (see Swift 1984 and Soward 1985).

We have estimates of η2 and η3 thanks to the pioneering analysis of Soward (1974),
who looked (in the course of a derivation of a convection-driven dynamo model) at the
Boussinesq problem. He considered an intermediate scaling between the one used here
and the strongly nonlinear limit of Julien and collaborators; in his scaling r−r0 = O(ε)
and the energy |A|2 + |B|2 + |C|2 is constant, so (necessarily) η1 = η2 + η3 = 0 at
leading order. In this case rolls are always unstable and hexagons neutrally stable.
When small non-Boussinesq effects are included, hexagons are stabilized for all 〈D〉.
To investigate the eventual destabilization of hexagons at larger amplitudes requires
delicate higher-order analysis.
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Figure 4. Contours of G in equation (5.1). In (a) s = 2, µ = −35/144, κ1 = 1, κ2 = 16 (Turing
mode); this is an (almost) steady state. In (b) s = 1, µ = 1, κ1 = 1, κ2 = 1/9 (Benjamin–Feir mode).
This is a snapshot of a state disordered in space and time.

5. Modulational instabilities
We now return to the basic equations (4.1) and consider the effects of large-scale

spatial dependence. We suppose the hexagons to be modulated on long horizontal
scales (X,Y ). Rather than carry out a higher-order analysis of the equations, we
model the effect of modulation by adding isotropic diffusion terms to the right-hand
sides of the equations. If we were to proceed with full generality, we would allow
three different modulated roll amplitudes, by appropriately extending (2.24). In fact
the mechanisms which stabilize the hexagonal planform in the absence of modulation
still operate here, with the consequence that A,B, C are attracted to a subspace where
they are equal in amplitude and can be taken as real. In that case the symmetries of
the pattern make the isotropic Laplacian operator the natural one. Then we have the
following equations, where now A,G are functions of X, Y , t and κ1,2 are positive
diffusion coefficients:

Ȧ = A(µ+ A− G) + κ1∇2A, Ġ = s(A2 − G) + κ2∇2G. (5.1)

This is of a form similar to reaction–diffusion equations encountered in chemistry
and biology. There exists the possibility of Turing-type instability. If we examine the
linearized equation for small disturbances to a steady solution (A0, A

2
0), and replace

∇2 by −k2, we obtain the dispersion relation analogous to (4.3), namely

λ2 + λ(s+ (κ1 + κ2)k
2 − A0) + (s+ κ2k

2)(κ1k
2 − A0) + 2sA2

0 = 0. (5.2)

Apart from the Hopf bifurcation at k = 0, A0 = s there are Turing-type modes that
arise when the constant term in (5.2) is negative. This can occur when A0κ2 > sκ1

provided (A0κ2 − sκ1)
2 > 4κ1κ2(2sA

2
0 − sA0). These conditions can be satisfied when
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κ2 > 2sκ1 > κ1, since s > 1
2

for there to be a uniform steady state stable to Hopf

modes. In that case there is a Turing instability when 1
2
< A0 < s(2

√
2sγ − γ2)−1,

where γ =
√
κ2/κ1. The mode appears and disappears before the appearance of the

Hopf mode in the range
√

2s < γ <
√

2s +
√

2s− 1 and in this case we find, in the
unstable range, a steady pattern of modulation with a wavenumber of order unity.
If on the other hand 2

√
2s > γ >

√
2s+

√
2s− 1, the Hopf bifurcation occurs in the

Turing unstable range, and we expect that the oscillations that arise will be Turing
unstable too. The lack of symmetry under sign change in the governing equations
implies that the pattern of modulation will be hexagonal close enough to onset,
though further away an irregular pattern of ‘cells’ can be observed with random
initial conditions (see figure 4).

A completely different long-wave instability mode can occur when the spatially uni-
form state is periodic in time. This instability, distinguished by zero critical wavenum-
ber, is analogous to the Benjamin–Feir instability of water waves (see e.g. Stuart & Di
Prima 1978). It depends on the fact that a periodic solution of an autonomous system
is always neutrally stable to a mode representing a simple time shift. Let us suppose
that (4.1) has a time-periodic solution A0(t), G0(t). The linear stability of this state to
long-wavelength modulations can be found by defining a small parameter ε and adopt-
ing the ansatz A = A0(τ) + ε2ra; G = G0(τ) + ε2rg; τ = t+ φ(X̃, Ỹ , T ) where T = ε2t,

(X̃, Ỹ ) = ε(X,Y ) are slow time and length scales, and (ra, rg) are remainder terms. It is

easy to see that correct to O(ε2), Ȧ = Ȧ0(1 + ε2φT ) + ε2ṙa,∇2A = ε2(Ȧ0∇̃2φ+ Ä0|∇̃φ|2),
and similarly for G. Then substituting into the p.d.e.s and dropping the tildes we find
at O(ε2)

ṙa − ra(µ+ 2A0 − G0) + A0rg = (κ1∇2φ− φT )Ȧ0 + κ1|∇φ|2Ä0,

ṙg − 2sA0ra + srg = (κ2∇2φ− φT )Ġ0 + κ2|∇φ|2G̈0.

}
(5.3)

To eliminate secular growth on the fast time scale, we apply a solvability condition
to (5.3). We define (ρa(t), ρg(t)) to be functions with the same period as A0 satisfying
the adjoint problem

ρ̇a = −ρa(µ+ 2A0 − G0)− 2sA0ρg, ρ̇g = A0ρa + sρg. (5.4)

It is then easy to show that

φT = K∇2φ+ L|∇φ|2, (5.5)

where

K =
κ1〈Ȧ0ρa〉+ κ2〈Ġ0ρg〉
〈Ȧ0ρa〉+ 〈Ġ0ρg〉 , L =

κ1〈Ä0ρa〉+ κ2〈G̈0ρg〉
〈Ä0ρa〉+ 〈G̈0ρg〉 , (5.6)

and the angle brackets now denote an average over a period of A0. We can lin-
earize this equation by the substitution ψ = eLφ/K , giving ψT = K∇2ψ. For simplicity
we define W = −〈Ȧ0ρa〉/〈Ġ0ρg〉, then we find that K can be negative, indicating
modulational instability to infinitesimal disturbances, if either W < 1, κ1W > κ2 or
W > 1, κ1W < κ2.

We have sought values for W by obtaining numerical solutions to (5.4). Because
of the sign of the time derivatives, this has to be done by finding a solution for A0(t),
G0(t) and integrating backwards in time over several periods to achieve convergence.
In every case we looked at we found that 0 <W < 1 and so the patterns are unstable
to the Benjamin–Feir mode for sufficiently small κ2/κ1. (L is found to be positive.)
These conclusions have been tested by carrying out numerical simulations of (5.1)
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in a periodic domain of size 60 × 60
√

3. Figure 4 shows modulated patterns for (a)
s = 2, µ = −35/144, κ1 = 1, κ2 = 16 (Turing mode), and (b) s = 1, µ = 1, κ1 = 1,
κ2 = 1/9 (Benjamin–Feir mode).

Of course, the coefficients will depend on the physical problem and the parameters.
But from the above it would seem that there is the potential for modulation over
almost the entire range of κ1/κ2.

6. Discussion
This paper, by means of two simple examples, has demonstrated that when the

tendency to hexagonal convection due to the breaking of up–down symmetry is
combined with the dynamical inclusion of the mean temperature mode due to the
small aspect ratio at high magnetic field strengths (or high Taylor number in the
rotating case), new and interesting time-dependent behaviour can result not far from
onset. The most novel and unexpected aspect of the results is the appearance of a
Hopf bifurcation leading to oscillatory motion of the hexagonal pattern. While the
full dynamics is described by a complicated set of differential equations, it is possible
to make a reduction that allows extensive investigation of the time-dependence. We
are also able to describe the effects of the new instability on the breakdown of
the hexagonal symmetry. Finally, we show that the uniform hexagonal pattern can
be expected to break down due to modulational instabilities. While the details of
the analysis involve several special choices of parameters, the principal governing
equations (2.17) and (3.10), together with the mean temperature equations, hold
for a wide range of parameters. In particular, there is no restriction imposed on
the diffusivity ratio ζ0 or the Prandtl number σ, except that they must be large
enough that the primary bifurcation is steady-state. Similarly the stratification is not
restricted to be small, except for carrying out the full reduction in the magnetic
case. The only important requirement is that the imposed magnetic field (or rotation
rate for the second problem) must be sufficiently large (or equivalently, the aspect
ratio of the convection at onset sufficiently small) that the secondary instabilities
described will occur before any other kind of breakdown of the steady solution. Thus
these transitions can in principle be observed in the laboratory, and are not mere
abstractions of interest only to the theorist.

It is interesting to note that the nonlinear terms in the amplitude equations appear
at dominant order in the scaling used, which follows that of Proctor (1986). In the
scaling of Matthews (1999) and Julien et al. (1999, 2000) all linear fields appear at
one order lower in ε. Thus in their problem the symmetry-breaking quadratic terms
in (2.17) would appear at higher order in the expansion than the term involving the
mean temperature, and it might therefore be thought that their results would remain
valid even when up–down symmetry is broken. This would seem to be the case for
steady solutions; consideration of the steady versions of (2.17), (2.19) shows that in the
limit of large r2 the quadratic terms are a small perturbation. However we know that
the instability described here does not vanish at large r2 when the degeneracy is not
broken. It is thus a nice question when and if these larger-amplitude solutions regain
stability as the Rayleigh number increases beyond the range of our theory. We have
provided a partial answer to this by showing that other small degeneracy-breaking
terms can restabilize the steady state (see discussion below (4.10)) but this does not
happen in a region where we can trust the expansion.

Of course the analysis presented here for the reduced system, while demonstrating
the existence of oscillatory convection in one parameter regime, does not tell the full
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story. We are in the process of integrating the full equations (2.17), (2.19) in order to
determine precisely the region of instability.

We are grateful to J. H. P. Dawes and J. H. Siggers for numerical assistance and for
checking some of the algebra. A. R. H. thanks the UK SERC for financial support.

REFERENCES

Busse, F. H. & Heikes, K. 1980 Convection in a rotating layer: a simple case of turbulence. Science
208, 173.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.

Dawes, J. H. P. 2001 Rapidly rotating convection at low Prandtl number. J. Fluid Mech. 428, 61–80.

Guckenheimer, J. & Holmes, P. 1986 Nonlinear Oscillations, Dynamical Systems and Bifurcations
of Vector Fields. Springer.

Hughes, D. W. & Proctor, M. R. E. 1990a A low-order model of the shear instability of convection:
chaos and the effect of noise. Nonlinearity 3, 127–153.

Hughes, D. W. & Proctor, M. R. E. 1990b Chaos and the effect of noise in a model of three-wave
mode coupling. Physica D 46, 163–176.

Julien, K. & Knobloch, E. 1997 Fully nonlinear oscillatory convection in a rotating layer. Phys.
Fluids 9, 1906–1913.

Julien, K. & Knobloch, E. 1999 Fully nonlinear three-dimensional convection in a rotating layer.
Phys. Fluids 11, 1469–1483.

Julien, K., Knobloch, E. & Tobias, S.M. 1999 Strongly nonlinear magnetoconvection in three
dimensions. Physica D 128, 105–129.

Julien, K., Knobloch, E. & Tobias, S. M. 2000 Nonlinear magnetoconvection in the presence of
strong oblique fields. J. Fluid Mech. 410, 285–322.

Knobloch, E. 1990 Pattern selection in long-wavelength convection. Physica D 41, 450–479.

Matthews, P. C. 1999 Asymptotic solutions for nonlinear magnetoconvection. J. Fluid Mech. 387,
397–409.

Proctor, M. R. E. 1986 Columnar convection in doubly-diffusive systems. Contemp. Maths 56,
267–276.

Proctor, M. R. E. & Weiss, N. O. 1982 Magnetoconvection. Rep. Prog. Phys. 45, 1317–1379.

Soward, A. M. 1974 A convection driven dynamo I. The weak field case. Phil. Trans. R. Soc. Lond.
A 275 611–651.

Soward, A. M. 1985 Bifurcation and stability of finite amplitude convection in a rotating layer.
Physica D 14, 227–241.

Stuart, J. T. & Di Prima, R. C. 1978 The Eckhaus and Benjamin–Feir resonance mechanisms.
Proc. R. Soc. Lond. A 362, 27–41.

Swift, J. W. 1984 Convection in a rotating fluid layer. Contemp. Maths. 28, 435–448.


